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Fig. 1. With SqueezeMe, we simultaneously run 3 Gaussian avatars locally on a Meta Quest 3 VR headset. This figure shows frame sequences of two
SqueezeMe avatars. Top: Boxing. Bottom: Miming hitting a baseball. Later in the paper, we refer to this model as "4k correctives, linearized." Each avatar has
approximately 60,000 Gaussian Splats and is drivable from video input.

Gaussian Splatting has enabled real-time 3D human avatars with unprece-
dented levels of visual quality. While previous methods require a desktop
GPU for real-time inference of a single avatar, we aim to squeeze multiple
Gaussian avatars onto a portable virtual reality headset with real-time driv-
able inference. We begin by training a previous work, Animatable Gaussians,
on a high quality dataset captured with 512 cameras. The Gaussians are
animated by controlling base set of Gaussians with linear blend skinning
(LBS) motion and then further adjusting the Gaussians with a neural net-
work decoder to correct their appearance. When deploying the model on
a Meta Quest 3 VR headset, we find two major computational bottlenecks:
the decoder and the rendering. To accelerate the decoder, we train the Gaus-
sians in UV-space instead of pixel-space, and we distill the decoder to a
single neural network layer. Further, we discover that neighborhoods of
Gaussians can share a single corrective from the decoder, which provides
an additional speedup. To accelerate the rendering, we develop a custom
pipeline in Vulkan that runs on the mobile GPU. Putting it all together, we
run 3 Gaussian avatars concurrently at 72 FPS on a VR headset. Demo videos
are at forresti.github.io/squeezeme.

.

1 Introduction
Since the inception of Virtual Reality (VR), a fundamental goal has
been to faithfully simulate the real world in an immersive envi-
ronment [22]. To simulate human interactions, we need realistic
avatars that mimic the appearance of real people. This would enable
people to be themselves in VR, happily and productively interact-
ing with other people in meetings, games, adventures, and shared
experiences. For the best experience, avatars must be drivable from
camera input data and runnable in real-time. To avoid high cloud-
computation costs and internet latencies, it would be ideal run the
avatar inference and visualization locally on VR headsets.
For graphical simulation of scenes and objects, three common

approaches are mesh, NeRF [12], and Gaussian Splatting (GS) [4].
Meshes, with textures and materials overlayed, are cheap to ren-
der, but they are difficult to train from data. Further, representing
fine details such as hair can be difficult [21]. NeRF offers higher
quality than mesh, and NeRF is easier to train from data, but ren-
dering NeRF is prohibitively slow (even with optimizations such as
Instant-NGP [14]) on a VR headset. 3D Gaussian Splatting [4] has
emerged as a particularly effective approach for graphical simulation
of human avatars. GS offers dramatic improvements in the quality

https://forresti.github.io/squeezeme
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of human hair and clothing visualization, compared to previous
mesh-based methods [20]. Further, recent work such as Animatable
Gaussians has shown that human avatars can be "driven" by using
a decoder and/or linear blend skinning to update the avatar’s shape
and appearance [6] (see Section 2.2 for details). And, while Animat-
able Gaussians method runs at 10 FPS on a desktop GPU, we must
dramatically improve the algorithm’s efficiency before it can run in
real-time on the modest computational budget of a Meta Quest 3
VR headset.

In this work, our goal is to redesign a drivable Gaussian splatting
avatar algorithm – specifically Animatable Gaussians [6] – to be
fast enough to run multiple avatars locally on a VR headset, while
preserving nearly all the quality of the baseline model.

2 Related Work
Since the introduction of Gaussian Splatting (GS) [4], the commu-
nity has developed solutions for animating people, objects, and
scenes with GS. For instance, Luiten et al show that Gaussians can
be extended into the time domain, enabling 4D video animation [9].
Li et al introduced Animatable Gaussians, which enables driving
Gaussian avatars to mimic input videos [6]. This allows a user to
move in front of a webcam and control a Gaussian-enabled character
in a video game or virtual reality environment. Several other works
also animate human figures with Gaussians [3, 13, 17, 21, 26]. To re-
duce the computational costs associated with visualizing Gaussians,
Svitov et al propose HAHA, which represents drivable avatars with
a hybrid of Gaussians and mesh [23]. Next, we review Gaussian
Splatting and Animatable Gaussians in more detail.

2.1 Gaussian Splatting
3D Gaussian Splatting [4] is a powerful representation for computer
graphics. Each Gaussian splat is parameterized by several terms
including rotation, translation 𝜇, scale 𝜎 , and a set of spherical
harmonics terms for view-dependent color. The splat’s rotation and
scale construct a covariance matrix Σ. Each splat also has a density
term 𝛿 , which defines the opacity at the center of the splat.

Let us view the splats from a specific camera 𝑐 , defined with focal
length (𝑓𝑥 , 𝑓𝑦), translation 𝑡𝑐 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ), and rotation matrix 𝑅𝑐 .
The Jacobian of this camera is
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From the camera perspective, the 2D covariance of the splat is
Σ𝑝𝑟𝑜 𝑗 = 𝐽𝑅𝑐Σ𝑅
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𝑇 . Let 𝜇𝑐 represent the translation of a splat in
pixel space.
After sorting the splats based on their depth and their visibility

to each pixel, the splats are rasterized onto an image as follows. The
opacity 𝛼 of a splat 𝑘 to a pixel located at 𝑝 = (𝑝𝑥 , 𝑝𝑦) units from
the image center is

𝛼𝑘 = 𝛿 𝑒𝑥𝑝 (−1
2
(𝜇𝑐 − 𝑝)𝑇 Σ−1
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The final color of pixel 𝑝 is computed as
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where 𝑁 is the number of splats visible to pixel 𝑝 , and the view-
dependent color 𝑐𝑖 is computed using spherical harmonics.

2.2 Animatable Gaussians
We now summarize the Animatable Gaussians [6] method for rep-
resenting human motion with Gaussian Splatting. Let 𝐺𝑖 represent
the initial "base" Gaussians of a human body before animation. Let
𝐺 𝑓 represent the final Gaussians that are posed to form one frame
of animation. Let 𝑝 be the desired pose of the avatar for one frame of
animation. Let 𝐿𝐵𝑆 be linear blend skinning [11]. Let 𝐶 be a neural
network that computes correctives. For each frame, the animated
Gaussian is computed as:

𝐺 𝑓 = 𝐿𝐵𝑆 (𝐺𝑖 +𝐶 (𝑝), 𝑝) (1)

The intuition is that 𝐺𝑖 is the set of Gaussians in a canonical
pose (typically an A-pose with legs together and the arms raised
slightly), and the large motions are produced using LBS. And, the
neural network𝐶 captures more subtle effects such as the stretching
and wrinkling of skin and fabric.
𝐶 produces a grid of 1024x1024 Gaussian correctives in pixel-

space. While 𝐶 produces approximately 1 million correctives, there
are only 300,000 Gaussians, so a binary mask is used to remove
approximately two-thirds of the correctives produced by 𝐶 . For
inference, we find this is highly inefficient; it takes 50 ms (20 FPS) to
run a quantized version ofmodel𝐶 on theHexagon Tensor Processor
(HTP) on a Meta Quest 3 VR headset.

2.3 VR Hardware
Our target platform is the Meta Quest 3 virtual reality headset. It
uses around 10 Watts of power, which is far less than an NVIDIA
H100 GPU’s 700 Watts. The computational system-on-chip (SOC) in
Quest 3 is the Qualcomm XR2G2 [19]. Within XR2G2 are multiple
processing devices, notably a cluster of ARM CPUs, the Hexagon
Tensor Processor (HTP), and the Adreno GPU [18]. The HTP has
two engines: the matrix engine, which has fixed-function support to
efficiently compute convolutions and linear layers, and the vector
engine, which can be programmedmore flexibly for other operations
such as activation functions, transposes, and image scaling. The HTP
is optimized for integer math with 8-bit weights, and 8-bit or 16-bit
activations, therefore we need to quantize our models to run on the
HTP. In our final implementation, we will run the corrective model
𝐶 on the HTP, and we will render1 the them on the GPU.

In the mobile GPU implementation that we will describe in Sec-
tion 3.5, we can visualize approximately 180,000 Gaussians per frame,
at a frame rate of 72 frames per second (FPS), which is the refresh
rate of the VR display. Our goal is to run many avatars in parallel at
72 FPS, so we will reduce the number of Gaussians and also use a

1In this paper, we use the terms "visualize" and "render" interchangeably. What we are
referring to is the process of projecting Gaussian splats into image-space and rasterizing
them.
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level of detail system to further reduce the Gaussians on avatars on
far-away avatars.

2.4 Codec Avatars
The goal of Codec Avatars (CA) is to produce realistic 3D human
avatars that are drivable in real-time and can be used in VR envi-
ronments. CA can be driven from full-body camera(s) directed at
a human. CA can also be driven from cameras mounted on a VR
headset [1, 2]. In CA, there is a notion of a sender and a receiver. A
sender provides live updates of their face and body pose to other
users. A receiver takes others’ pose and visualizes them in real-time
in a VR environment. Typically, every user is both a sender and a
receiver. In a video game or large meeting, a receiver may need to
visualize dozens of avatars at once.

Multiple representations of Codec Avatars have been developed,
including tracked mesh [10], volumetric primitives [7], and Gauss-
ian Splatting [20]. For the present work, we focus full-body Codec
Avatars based on Gaussian Splatting. For our experiments, we drive
the avatars from full-body cameras, though in the future our work
can be extended to drive the avatars from VR head-mounted cam-
eras.

3 Methodology

3.1 UV-space Animatable Gaussians
We now aim to produce quality similar to Animatable Gaussians,
with fewer Gaussians. Our goal is to reduce the number of Gaussians
from 300,000 (too slow to run even one avatar at 72 FPS), to 60,000
or less. If there are 60,000 Gaussians per avatar, we could visualize
3 avatars in parallel.

In our preliminary experiments, we tried simply training with 5×
fewer Gaussians (reducing from 300k Gaussians to 60k Gaussians),
but we found that it degrades the avatar quality dramatically. In
Animatable Gaussians, we observe two areas where Gaussians may
be wasted. First, there are separate sets of Gaussians for the front
of the human body and the back of the body. Second, the Gaussians
are not initialized to align with the body. To address both of these
inefficiencies, we use the training images to reconstruct the avatars
and fit a mesh that can be controlled with LBS, similar to SMPL [8].
The mesh includes a predetermined UV mapping that we use for
all identities. Then, before we begin Gaussian splat training, we
initialize one splat at each pixel location in UV-space. We refer to
our approach as "UV-space Animatable Gaussians," and in Table 1
we observe it produces results comparable or superior quality to
the original Animatable Gaussians with 5× fewer Gaussians.

Compared to the original Animatable Gaussians model, an other
change we make is to reformulate the corrective computation with
an encoder-decoder network. So, we replace the corrective computa-
tion network𝐶 with an encoder 𝐸 and a decoder𝐷 , so the corrective
computation. The input to the encoder is a set of face keypoints and
a set of body keypoints. The encoder has two parts: a face encoder,
and a body encoder. The face encoder and the body encoder each
consist of two linear layers, and they each output a 32d vector. We
concatenate the output of the face encoder and the body encoder
into one 64d vector, which is the input to the decoder. The network
architecture of 𝐷 is a stack of convolution, hardswish, and bilinear

upsampling. We illustrate the model architecture in Figure 2. The
output of 𝐷 is a 256x256x37 grid of correctives, each element of the
256x256 is one Gaussian corrective, and each Gaussian corrective
has 37 values, of which 27 values represent the spherical harmonics2,
and the remaining 10 values represent correctives for the rotation,
translation, and scale.

While our UV-space of size 256x256 gives an upper bound of 65536
Gaussians, there are some empty regions of the UV-mapping, so
there are only 60381 Gaussians. To discard unnecessary correctives,
we apply a binary mask𝑀 to the 65536 correctives to reduce it to
60381.
For the UV-space Gaussian method, we now show how to com-

pute the Gaussians for one frame of animation:

𝐺 𝑓 = 𝐿𝐵𝑆 (𝐺𝑖 +𝑀 (𝐷 (𝐸 (𝑝))), 𝑝) (2)

For compactness in the previous equation, describe the computa-
tion of final Gaussians as a sum of the base Gaussians 𝐺𝑖 and the
correctives 𝐷 (𝐸 (𝑝)). But, in reality, there is no corrective for 𝛿 , and
there are no base Gaussian attributes in 𝐺𝑖 for the 1- and 2-degree
spherical harmonics.

Our loss function is a weighted-sum of several terms: L𝑝ℎ𝑜𝑡𝑜 and
L𝑙𝑝𝑖𝑝𝑠 are the photometric (L1) and LPIPS [28] distance between
the ground-truth and predicted image. L𝑘𝑝𝑡 is the L1 loss, and the
body pose keypoints. To reduce "runaway" Gaussians that drift far
from their initial position, L𝑜 𝑓 𝑓 𝑠𝑒𝑡 is an L1 loss that is maximized
when the mean 𝜇 of each Gaussian in 𝐺 𝑓 is unchanged from 𝜇

where the Gaussian was initialized at the start of training. To reduce
unwanted holes in the avatar, we introduce L𝛼 , which is an L1 loss
that is maximized when the 𝛼-transparency map generated by the
Gaussian splat model matches the Sapiens [5] segmentation mask;
the intuition is that the avatar should be opaque and background
pixels should be transparent. When rendering Gaussian splats on a
mobile, it is cheaper if each Gaussian is visible from fewer pixels [16].
To reduce the number of pixels to which Gaussian is applied during
rendering, we adopt the loss L𝜎 , which uses L1 to minimize the
average size of the splats, and we adopt L𝑜𝑝𝑎𝑐𝑖𝑡𝑦 , which uses L1
to minimize the average opacity of the splats. The weights for the
sum are set to 𝜆𝑝ℎ𝑜𝑡𝑜 = 1, 𝜆𝑙𝑝𝑖𝑝𝑠 = 0.1, 𝜆𝑜𝑝𝑎𝑐𝑖𝑡𝑦 = 0.01, 𝜆𝑠𝑐𝑎𝑙𝑒 = 1,
𝜆𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 1, 𝜆𝑎𝑙𝑝ℎ𝑎 = 0.1, and 𝜆𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 = 0.1. The loss is computed
as

L = 𝜆𝑝ℎ𝑜𝑡𝑜L𝑝ℎ𝑜𝑡𝑜 + 𝜆𝑙𝑝𝑖𝑝𝑠L𝑙𝑝𝑖𝑝𝑠 + 𝜆𝛼L𝛼 + 𝜆𝑘𝑝𝑡L𝑘𝑝𝑡

+ 𝜆𝑜𝑝𝑎𝑐𝑖𝑡𝑦L𝑜𝑝𝑎𝑐𝑖𝑡𝑦 + 𝜆𝑠𝑐𝑎𝑙𝑒L𝑠𝑐𝑎𝑙𝑒 + 𝜆𝑜 𝑓 𝑓 𝑠𝑒𝑡L𝑜 𝑓 𝑓 𝑠𝑒𝑡

3.2 Linear distillation
We now turn our attention distilling the encoder 𝐸 and decoder
𝐷 into a single linear layer using principal component analysis
(PCA). For short, we refer to this process as linearization. To distill a
decoder for one identity, we begin by collecting a dataset of inputs
and outputs to the encoder-decoder. In this section, we continue
to use the face-encoder, but we replace the body-encoder with LBS
data. So, our input space is a set of poses, and the output space is
the output of the decoder from Equation 2.

2For all experiments on UV-space Gaussians, we use 2 degrees of spherical harmonics.
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Fig. 2. System Diagram during training. This is the configuration we use for training the model in Section 3.1.

For one frame, the linearized decoder’s input is the concatenation
of a 280d vector of LBS poses and a 32d vector of facial keypoint
embeddings. The decoder’s output is a 60381x37 tensor. We use
PCA to compress the input vector to a total of 32d. As an additional
optimization, we do a second stage of PCA to compress the spherical
harmonics from 27 values to 6 values. We invert the dataset matrix
and use least-squares to compute a linear layer that maps the input
to 60381x16 output.
For a given pose 𝑝 , the output of the distilled decoder 𝐷𝐿 (𝑝) is

computed as:

𝐷𝐿 (𝑝) = 𝐶 · 𝐵𝑐 (3)
Where:

• 𝐶 (Pose Codes) the PCA-compressed representation of the
pose, calculated as (𝑝 − 𝑝) · 𝐵𝑝 . The pose basis matrix 𝐵𝑝 is
obtained by performing PCA on the centered poses (𝑝 − 𝑝)
and retaining 𝑑 principal components. We add a bias term
to get 𝐶 = [1 (𝑝 − 𝑝) · 𝐵𝑝 ] .

• 𝐵𝑐 (Correctives Basis Matrix) is the analytical solution to the
least squares problem, calculated using the normal equations
𝐵𝑐 = (𝐶𝑇𝐶)−1𝐶𝑇 ·𝑀 (𝐷 (𝐸 (𝑝))), where𝑀 (𝐷 (𝐸 (𝑝))) are the
masked correctives.

The distilled decoder is a 2-layer model. The first layer is a linear
layer that takes a 32d compressed vector and outputs a 60381x16
vector, and the layer has 32x60381x16 parameters. The second layer
takes 6 of the 16 values from the first layer and expands them into
27 spherical harmonics, and the layer has 6x27 parameters. By far,
the dominant cost is the first layer, which we find takes 4 ms to run
(with quantization) on the Hexagon Tensor Processor (HTP) of the
XR2G2 chip in the Meta Quest 3 VR headset.

With𝐷𝐿 representing the distilled decoder, we compute the Gaus-
sians for one frame of animation as follows.

𝐺 𝑓 = 𝐿𝐵𝑆 (𝐺𝑖 + 𝐷𝐿 (𝑝), 𝑝) (4)
Our linear distillation draws inspiration from Gaussian Eigen

Models [29], which distills a decoder linear for head-only human
animation to a single linear layer. One difference between our work

and [29] is that we do full-body instead of head-only avatars. An
additional difference is that we do an additional stage of PCA to
compress the spherical harmonics space from 27 dimensions to 6,
further reducing the computational cost of our linear decoder.

3.3 Gaussian Corrective Sharing
In the human body, nearby particles of skin, hair, and clothing move
together. So far in this paper, we have produced one corrective for
each Gaussian, which allows Gaussians to move independently. If
we can leverage the correlation among nearby Gaussians to reduce
the number of correctives, this will reduce the number of outputs in
the decoder, yielding a speedup. In other words, we wish to decouple
the number of Gaussians from the number of correctives, and we
want to reduce the number of correctives.

While the decoder from Equation 2 produces 256x256x37 output,
we modify the decoder to produce a smaller 64x64x37 output. For
notation, we call the modified decoder𝐷𝐺𝐶𝑆 , where GCS is short for
Gaussian corrective sharing. This reduces the number of correctives
from 65536 to 4096. During training, we take the output of 𝐷𝐺𝐶𝑆

and use Nearest interpolation to upscale it from 64x64 to 256x256
= 65536 correctives. This has the effect of "sharing" corrective for
each 4x4 neighborhood of Gaussians in UV-space. For notation, we
abbreviate Nearest upscaling as𝑈𝑝 . And, similar to Equation 2, we
use a mask 𝑀 to reduce the number of correctives from 65536 to
60381. During training, we compute the Gaussians for one frame of
animation as

𝐺 𝑓 = 𝐿𝐵𝑆 (𝐺𝑖 +𝑀 (𝑈𝑝 (𝐷𝐺𝐶𝑆 (𝐸 (𝑝)))), 𝑝) (5)

3.4 Combining Linear Distillation and Corrective Sharing
We now combine linear distillation and Gaussian corrective shar-
ing. The key idea is to distill 𝐷𝐺𝐶𝑆 without upsampling, so the
linearized model only needs to produce 4096 correctives instead of
60381 correctives. But, how to map a flat array of 4096 correctives
to a flat array of 60381 Gaussians? We address this by building a
lookup table as follows. Let 𝐴 be an array of size 64x64, where the
values of 𝐴 go from 0 to 4095 in contiguous order. Let𝑈𝑝 represent
Nearest upscaling. And,𝑀 is the binary mask that removes unused
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Fig. 3. System Diagram with optimizations. Here, we show the end-to-end optimized system, including the techniques from Sections 3.1–3.4. For details
on HTP and GPU, see Section 2.3. For details on the sender and receiver, see Section 2.4.

correctives from a 256x256 grid. We define the lookup table 𝐿𝑈𝑇 as

𝐿𝑈𝑇 = 𝑀 (𝑈𝑝 (𝐴)) (6)

where LUT is a vector of length 60381. For any input to LUT in the
range of [0, 60380], returns the appropriate corrective sharing index,
in the range of [0, 4095].
We apply linear distillation to the corrective sharing decoder to

produce a new decoder 𝐷𝐿𝐺𝐶𝑆 . Let 𝑥 be the index of one Gaussian
in the range of [0, 60380]. For one frame of animation, we compute
Gaussian 𝑥 as

𝐶𝑜𝑟𝑟 = 𝐷𝐿𝐺𝐶𝑆 (𝑝) (7)
𝐺 𝑓 [𝑥] = 𝐿𝐵𝑆 (𝐺𝑖 [𝑥] +𝐶𝑜𝑟𝑟 [𝐿𝑈𝑇 [𝑥]], 𝑝) (8)

When using corrective sharing with 4096 correctives, the latency
to compute the quantized decoder 𝐷𝐿𝐺𝐶𝑆 takes just 0.45 ms on the
Quest 3 HTP. We illustrate the end-to-end system with 𝐷𝐿𝐺𝐶𝑆 and
on-device inference in Figure 3.

3.5 Vulkan Visualizer
While the Qualcomm system-on-chip in the Meta Quest 3 does not
support CUDA, it does support Vulkan. With Vulkan, we can pro-
gram both compute shaders (which use the programmable portions
of the mobile GPU) and graphics shaders (which use the fixed-
function hardware rasterizer). The key steps in Gaussian Splatting
visualization are: projecting 3D Gaussians camera space; applying
spherical harmonics to determine the color of each Gaussian; sorting
Gaussians based on their depth; and rasterization. We implement a
compute shader that takes a camera angle and performs the projec-
tion and calculates the color of each Gaussian. Inspired by [15, 27],
the compute shader outputs a set of quads, where each quad has
the size, color, and opacity-function of one gaussian. To sort and
rasterize the quads into an image, we implement graphics shaders
that take advantage of the hardware support for depth-sorting and
rasterization.

Ground Truth Generated

Fig. 4. This is what the images look like when we evaluate them. Left:
ground-truth image. Right: generated image, with the avatar rendered in
front of a static image of the studio. Both images are cropped to a bounding-
box of a human segmentation mask.
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Table 1. Main results. We evaluate the impact of linearization and number of correctives on quality. Results are at the original image resolution, with images
cropped to rectangles based on segmentation of the avatar. Results are averaged over 4 identities. Latency is for the decoder only.

Model # Gaussians # Correctives Linearized L1 ↓ LPIPS ↓ PSNR ↑ SSIM ↑ Decoder Latency
on Quest 3

Animatable Gaussians [6] 300k 300k 0.043 0.158 23.349 0.602
SqueezeMe 60k 60k 0.037 0.145 24.744 0.625
SqueezeMe 60k 4k 0.037 0.147 24.778 0.623
SqueezeMe 60k 60k ✓ 0.040 0.150 24.159 0.618 5.0 ms
SqueezeMe 60k 4k ✓ 0.040 0.151 24.134 0.615 0.45 ms
SqueezeMe (no decoder) 60k 0 0.041 0.165 23.632 0.607 0

4 Experimental Setup
We train and evaluate on data that was collected on an internal
capture domewith the users’ permission to use in published research.
Our capture dome is a 3 meter diameter domewith 512, 25 megapixel
cameras streaming at 90 FPS. The dome also has 1024 individually
controllable lights.
For evaluating the results, we render the avatars in front of an

image of the multi-camera, multi-light studio environment where
the ground-truth data was captured, and we show examples of
ground-truth and generated images in Figure 4. A significant portion
of the image is background, so we crop the rendered images to the
maximum width and height of Sapiens [5] segmentation masks
on the ground-truth data. It is important to note that without this
cropping, all models would benefit from artificially inflated accuracy
scores due to the large background regions that do not contain the
avatar. We use LPIPS [28], L1, PSNR, and SSIM [25] to evaluate the
cropped images against ground-truth.

We choose Animatable Gaussians as a baseline for the following
reasons. Works such as [26] focus on the human head, while our
goal is to animate the full body. 3DGS Avatar [17] and Animatable
Gaussians [6] both develop Gaussian full-body avatars, but Animat-
able Gaussians produces the biggest gains over the non-Gaussian
baseline of ARAH [24]. Further, while other works train Gauss-
ian avatars from multi-camera datasets, GaussianAvatar [3] and
HAHA [23] each train on a single-camera video sequence, which
is quite impressive, but limits the quality of the final avatar. To the
best of our knowledge, Animatable Gaussians is the leading method
for Gaussian full-body animation, particularly when a multi-camera
training dataset is available.

5 Results
In Table 1, we compare several versions of our method with the
baseline of Animatable Gaussians. In all of our evaluations, we are
performing novel-view synthesis, i.e. we are using camera posi-
tions that were not in training set. All results are averaged across 4
identities and 5 cameras per identity. The test set is held-out from
the dataset that is used for training, linearization, and quantization.
In Table 1, we observe that non-linearized models with 65k or 4k
correctives produce virtually the same results, with 65k narrowly
winning on LPIPS and SSIM; 4k winning on PSNR, and a tie on L1.
Thus, corrective sharing with 4k correctives does not seem degrade
quality according to these numerical measurements. Further, we
observe a modest drop in numerical quality when linearizing the

65k and 4k models. But, the linearized models still produce higher
quality than a baseline trained with no decoder.
We evaluated the linearized models with and without quantiza-

tion, and we got identical results. In other words, quantizing with
8-bit weights and 16-bit activations did not harm the L1, LPIPS,
PSNR, and SSIM. Therefore, the "Linearized" results in Table 1 are
for both quantized and unquantized models.
We now consider the qualitative results. In Figure 5, we show

representative examples of the different models across different iden-
tities, poses, and camera views. We observe that using corrective-
sharing to reduce the number of correctives from 65k to 4k and
linearizing the model produce very little degradation in the avatar
quality. However, by reducing the number of correctives and lin-
earizing the model, we are able to squeeze the decoder onto a VR
headset with just 0.45 ms of latency per inference. When running at
72 FPS, and with half of the VR headset’s Hexagon Tensor Processor
(HTP) core dedicated to the decoder, this allows to decode 15 avatars
in parallel.
However, there are some problems that arise with corrective-

sharing and linearization. For instance, in Figure 6(b, e) we find that
corrective-sharing and linearization can both cause degradation at
on the arms, particularly at the armpit and the point where a t-shirt
sleeve meets the skin. Further, in Figure 6(a), we observe that for
certain identities and certain poses, all the models struggle with
blurriness on the hands. These problems may be resolved in the
future with more adaptive methods of distributing Gaussians and
correctives across a human avatar.

5.1 End-to-End Results
Our analysis has focused on improving the latency of the decoder,
which provides correctives to the Gaussians in every frame. Now
that we have improved the decoder latency, and we have imple-
mented an efficient visualizer in Vulkan, we can run 3 avatars at
full resolution concurrently on a Meta Quest 3 VR headset at 72
FPS. The optimized linear decoder with 4k correctives uses minimal
computation on the HTP, but the mobile GPU visualization limits
latency. In the future, a level of detail (LOD) system could allow
more avatars to be decoded and visualized on a VR headset.

6 Conclusions
Gaussian Splatting based avatars offer high quality, but until the
present work they were too slow to run locally on a VR headset. We
propose several techniques to improve the efficiency of Gaussian
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Splatting in animatable human avatars, including UV-space Gaus-
sians, linear distillation and corrective-sharing. This improves the
latency of the Gaussian corrective decoder from a baseline of 50
ms to just 0.45 ms. Further, we can run 3 avatars at 72 frames per
second on a Quest 3 VR headset. We believe this work will usher in
a new phase of lifelike human interactions in virtual reality.
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Fig. 5. Qualitative results. Our 0.45 ms model produces results that are competitive with far more expensive models.



SqueezeMe: Efficient Gaussian Avatars for VR • 9

Fig. 6. Failure cases. (a) In all models and identities, hands are sometimes blurry. (b) The 4k and linearized models struggle with the edge of a t-shirt sleeve.
(c) All models have unwanted transparency under the arm for this identity’s avatar, but it is worse in 4k and linearized models. (d) All models struggle with the
seat of the pants for this identity, but the 4k and linearized models struggle more. (e) The 4k and linear models suffer more degradation in the underarm for
this identity.
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